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1. INTRODUCTION

The current methods of analyzing directional data

were motivated by measurements of (1)y the direction of the

long axis of pebbles (Krumbein, 1939), (ii) the direction

(not strength) of magnetization of rocks (Fisher, 1953),

(iii) the vanishing bearings of homing pigeons. In case

(iM we have axial, not directional, data, and the axes

could be oriented in two or three dimensions. The data

could be displayed by marking the two points where the axis

cuts a unit circle or sphere. In case (ii), each measure-

ment can be thought of as a unit vector or as a point on a

sphere of unit radius. In case (iii), each measurement can

be thought of as an angle, a point on a circle of unit ra-

dius or a unit vector in the plane. In each of these cases,

the sample of axes or directions has a fairly symmetric

* cluster about some "mean" direction, so that some scalar

* might be sought to describe the 'dispersion' of the data.

Thus we may seek for directions, analogues of the mean

and variance of data on the real line -- and even of the

normal distribution. The distribution used is known by the

names von Mises on the circle, and Fisher on the sphere and

higher dimensions. This density is proportional to exp K cos e

where e is the angle between the population mean

direction and the direction of an observation. K z 0 is

an accuracy parameter. For some axial data, the density
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proportional to exp K cos 2 e is helpful. The scatter of

data on the sphere in some applications suggests more

general densities of the form (Beran (1974))

exp Z s rSr (e, )

where Sr (e,) is a surface harmonic of degree r in

spherical polar form. The special case r=1 is the Fisher

distribution; that with S2 only is the Bingham (1974)

distribution which may be written
exp {K1  (r'ji)2 + K2 (L'I2)2 + K3 r';3) 2

where the terms r'pi are the scalar products of the ob-

served direction r with three mutually orthogonal direc-

tions. (See Directional Distributions.)

Assuming that our data is fitted by one of these dis-

tributions, we may find maximum likelihood estimates and

make likelihood ratio tests of various hypotheses in the

usual way. If for the density exp K cos e, the data is

not too dispersed, it will be shown in §3 that those methods

can be reduced to analogues of the familiar analysis of

variance. These tests are appropriate when the K's are

large and due to Watson (1956a,b, 1965). If the sample

size is large, there are the usual simplified methods.

For the general Beran family of densities, it is hard

to estimate the parameters except with large samples.
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It could well be that there is no preferred direction--

for example, the pigeons may be unable to use any naviga-

tional clues and leave in random directions. A test for

the stability of magnetization of rocks that left a forma-

tion (which would be magnetized uniformly) to be part of

a conglomerate is that the direction of magnetization of

pebbles in the latter is uniform. Thus, tests here for

uniformity are perhaps of more practical importance than on

the line.

The book by Mardia (1972) provides references to all

the pre-1971 original papers and tables of significance

points. Extensive references to Earth Science applications

are given to Watson (1970). Kendall (1974), his references

and the Discussion open up other related areas, practical

and theoretical.
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2. EXPLORATORY ANALYSIS

Data in two dimensions could be grouped by angle and

sectors drawn with radii proportional to frequency. This

"rose diagram" is the analogue of the histogram. One might

use (frequency)"' In three dimensions, it is hard to

view points on a sphere, so that projections are used. The

equal area or Lambert projection makes the density of

points easy to interpret. One may only see one hemisphere,

so one tries to position it conveniently. Indeed, the

ability to rotate the data freely and view projections is

invaluable in practice. The programs are easy to write.

Such plots will reveal the general shape of the data -- one

or more clusters, points clustered around great circles,

etc. On the sphere, 'histograms' are rarely used, but con-

touring methods are often used, e.g. one might compute a

density estimate at r from

N
# (L) = 1I I Nr~M= r ri)

i=1

where wN(z) is a probability density on (-1,1) suitably

peaked at z = 1 As an example, we could use w(r'r i )

proportional to exp K r'ri where KN increases with N.
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The position of a sinale cluster is clearly suggested

by . = R/R where R : Yi and R = length of R . If

the cluster is very dispersed, R will be much smaller than

N so that N - R is a measure of total dispersion of the

sample. This suggests (N-R)/N should be an analogue of

the sample variance or dispersion. For example, if all the

vectors are identical R = N , and this quantity is zero.

For axial data, data with diametrically opposed modes

or clusters, and data around a great circle, one might look

at

Cos 2 e, = J(ri'2)
2

as v varies over the sphere. Its stationary values are

the eigen values of the matrix li i  and the e4'en vec-

tors interesting directions of v One large and two

small eigen values suggest a single cluster or an axial dis-

tribution since there is a v that is nearly parallel or

antiparallel to all the observations. A single small and

two nearly equal large roots suggest a uniform distribution

i
.. . .. I. . ... ... ., ..

AI II I II I
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equal. They are 195, 167, 144. But for Fig. 3 they are

119, 20, 13. The sums of these numbers, but for rounding

errors, are 505 and 153 respectively. The vector resultant

R of the vectors in Fig. 3 is (5-13, 1.36, 99.23) so its

length (5-132 + 1..362 + 99.232) = 99.37 = R . The point

where R meets the hemisphere is an estimate of the mean

direction of these normals. (153 - 99-37)/153 = .35 is

a measure of the dispersion of the data about this mean

direction. The direction cosines of the mean direction

are (5"13, 1.36, 99.23)/99.37 = (0.052, 0-014, 0.998).

The eigen vector associated with the eigen value 119 is

very similar (.071, .018, .997).

3. PARAMETRIC ANALYSES

For a single cluster on the sphere, it is reasonable

to assume the Fisher distribution which yields a likeli-

hood

N47sinhK exp Kr.L sinhK exp KR
i=1 4rih

Thus the m.l. estimates are ui = R/R and K such that

coth K 1/K = R/N or approximately k = (N-1)/(N-R).

Thus for the data in Fig. 3 which seems (this could be

examined more carefully) to follow the Fisher distribution,

= (0.052, 0.014, 0.998) and k = (153 - 1)/(153 - 99.37)
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around a great circle whose normal is the eigen vector for

the small root, etc.

There is no severe problem here with "wild" observa-

tions, although they may affect measures of dispersion.

To illustrate the above suggestions, we consider data

on the orbits of comets given in Marsden (1979). The ori-

entation of the orbital planes and directions of motion may

give clues on their origin. The normal to the orbit plane

in the direction suggested by the right hand rule (fingers

in the direction of motion, thumb indicating the normal)

is a unit vector. Looking down onto the plane of the elip-

tic, and using an equal area projection, the vectors asso-

ciated with all periodic comets are shown in Fig. 1. The

clumping of 658 points in the center (or pole of the hemis-

phere) indicates that many comets move like the planets in

orbits near the plane of the earth's orbit. Cometary or-

bits change so we have used orbits associated with their

last apparition, or sighting. If only the 505 comets with

periods greater than 1000 years are plotted (see Fig. 2),

their normals appear to be uniformly distributed. The dis-

tribution of the 153 normals to the orbital planes of

comets with periods of less than 1000 years (see Fig. 3)

is concentrated. The superposition of Figs. 2 and 3 is

of course Fig. 1. The eigen values of the matrix 7r, r,

for the data in Fig. 2 are, as should be expected, fairly
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: 2.87 These are the intuitive estimators derived above.

Writing riw = cos e. , and letting K be large so

2 sinh K exp K , one may show that 2K(1 - cos e) is

distributed like X22 Hence, if u is known

Z 2K (1-cos e : 2K(I-R%1 ) is distributed like '2N

One might guess that when i is fitted to the data, 2

d.f. will be lost so that 2K(N-R) is approximately

X(NI) Hence, we may write, setting R'w = X , the

identity

N-X = N-R + R-X

and give it the interpretation

disper.sion about = dispetsion about + dizpersion of about

tr u e i estimate

Continuing this analogue to the analysis variance, we have:

2K(N-X) = 2K(N-R) + 2K(R-X)

X2 X2( 2

X2N2( -) X

4
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so that the test of a prescribed mean 1 is provided by

2
dispers4ion oj about P _ 2K(R-X _ 2

dispeLsion about 2 2K N-R) 2
X2 (N-)

Thus one may use F2, 2 (N-1 ) to make the test. The reader

should examine Fig. 4 to see the commonsense of the text.

The data in Fig. 3 have a k of only 2.87, about the

minimum for which the above approximation makes sense. To

test the null hypothesis that the true mean normal is per-

pendicular to the ecliptic, i.e. direction p = (0,0,1),

R'P = 99.23 = X Thus (N-1)(R-X)/(N-R) = 0-04 is very

small compared to F2, 3 0 6 -- clearly the null hypothesis

is strongly supported.

Similarly, to test that two populations (with the same

large K) have the same mean direction given samples sizes

N1,N 2  and resultants R and R2 9 Fig. 5 suggests the

statistic

R I+R 2-R

(N 1 -R I ) + (N 1 -R 1 )

and the identities (with N = NI+N 2 , R = RI+R2 )

R2
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2 ~2+ 2 2 2 2

suggest that F2, 2 (N-2 ) may be used.

Similar tests (with tables) are available on the circle

for the von Mises. Details of these, some exact and fur-

ther approximate tests for all the distributions above are

given in Mardia's book. Much of this work is due to M.A.

Stephens. The result is a fairly complete set of analogues

of normal tests for independent observations. Conspicu-

ously lacking so far are satisfactory analogues for cor-

related directions (but see Stephens [1979]) and time

series or spatial fields of directions. Fortunately, such

problems seem rare in practice. Wellner (1978) extends the

two sample theory -- see his references to related work.

Bingham (1974) gives methods for his distribution.

4. TESTS OF UNIFORMITY

As mentioned earlier, with reference to the homing

directions of disoriented pidgeons, the direction of magnet-

zation of pebbles in a conglomerate and the normals to the

orbits of comets with periods over 1000 years (see Fig. 2),

the problem of testing for uniformity (q.v.) arises, more

often here than on the line. One has an intuitive feeling

whether a set of points on a circle, or sphere, or an equal

it



area projection of a sphere suggest non-uniformity in

the population they come from, and intuition suggests

test statistics.

If the population is unimodal, the length R of the

vector resultant should be longer than it would be when

sampling from a uniform parent. The Fisher and von-Mises

unimod distributions become uniform when K=O. R does

not deoend upon the coordinate system--it is invariant.

Hypothesis testinq Co.v.) theory shows that in this case,

the best invariant test of K=O is Rayleigh's test: reject

uniformity if R is significantly large. Now

R2  = (Exi)2 + (Fyi)2 + (Ezi) 2

where (xi, Yi' z) = r. When the ri are independently

uniformly distributed over the sphere

Exi = Eyi = Ezi = 0

E(xiY i ) = E (YiZi) = E(zixi) = 0
E(xi 2 ) = E(yi E(z 2 )  = 1

Then Zix, ny i , Ez i become independently Gaussian, means

zero, variances N/3 and R2 becomes, on the null hypothesis,

2 R2 = 2 2
N 3/3. On the circle 2  (x 1i) + (Zyi) is, by a similar

argument, asymptotically NX2/2. These are also likelihood

ratio tests.

If the distribution is antipodally symmetric, R is

clearly not Powerful. The likelihood ratio test for a

Lk
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3inqham alternative might then be used--see Bingham

(1974). When this test is used on the data in Fiq. 2, it

shows that the noints are significantly non-random! The

eve is a poor judge in the other direction too--one often

thinks one sees features in purely random data.

One may ask for tests that are in the spirit of the

Kolmogorov and Cramer-von Mises tests. While one may

choose a starting point on the circle and form the sample

distribution, the resultinq tests depend upon the starting

ooint, i.e., they are not invariant. Invariant tests

for the circle were first constructed intuitively; Kuiper

(1960) qave an invariant form of the Kolmoqoroff-Smirnov

tests and Watson (1961, 1962) gave U 2, an invariant form of

the Crarer-von Mises tests.

Motivated by A!ne (1968), Beran (1968) discovered a
J2

very general theory to derive statistics of the U2  type

on homogeneous spaces as locally optimal tests. See also

Gine (1975) and Prentice (1978) for further generalizations.

Wellner's (1978, 1979) 2 sample (asymptotic) tests arise

by applying the permutation idea to the Fourier co-effi-

cients used since Watson (1961) , Beran (1968) in this

literature on uniformity testing. (See also Goodness-of-

Fit Tests.) Watson (1974) produced Kuiper-Kolmogoroff type

tests as optimal tests for distant, not local, alternatives.
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5. MISCELLANEOUS REMAPKS

These tonics flow naturally into more qeneral orienta-

tion oroblems--we have dealt with the orientation of a line

or arrow, but a solid body is oriented by an orthogonal

matrix. They also raise oarticular cases of the fascina-

tinn oroblem of finding suitable definitions on new

manifolds of familiar ouantities like means, disoersions,

and correlations.

More references to modern work can be traced through

Wellner (1979), and Beran (1979) who exploits the expon-

ential family simplification; Beran avoids the complex

maximum likelihood estimation by using a non-parametric

estimator of the logarithm of the density.

The probabilitv and statistics of directed ouantities

has some very early history. Buffon solved his needle

problem in 1733. Daniel Bernoulli tried in 1734 to show

that it is very unlikely that the new coincidence of the

olanetary orbits is an accident. (See, e.q., 1atson. 1970,

1977).

Acknowledgement: We wish to thank Elizabeth Ryder for

analyzing Marsden 's comet data.
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CAPTIONS

Fig. 1. Equal area plot of the normals to the last seen

orbit of 658 comets, as seen looking vertically

down onto the ecliptic

Fig. 2. Equal area plot of the normals to the last seen

orbit of all 505 comets with periods greater than

1000 years, as seen looking vertically down onto

the ecliptic

Fig. 3. Equal area plot of the normals to the last seen

orbit of the 153 comets with periods less than

1000 years, as seen looking verti:ally down onto

the ecliptic

Fig. 4. The sample vector resultant R whose projection

down onto the hypothetical mean direction vi has

length X. If R and p are nearly parallel

(orthogonal), R-X will be small (large)

Fig. 5. The sum of the lengths vector resultants R1

and R2 of two samples will be only slightly

(much) larger than the length of R, the resul-

tant of all the data if R1 and R2 are nearly

parallel (greatly inclined)

o(
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